Jairo Quiroga*, Braulio Insuasty, Henry Insuasty and Rodrigo Abonía

Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A.A. 25360, Cali, Colombia.

Antonio Ortíz, Adolfo Sánchez and Manuel Nogueras*

Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
Received June 22, 2000

Abstract

Benzo[h]pyrimido[4,5-b]quinolines (3) have been synthesized via a regiospecific cyclocondensation reaction between 6 -aminopyrimidines (1) and 2-dimethylaminomethylentetralone hydrochloride (2). The linear structure of the final compounds were determined by nmr measurements, especially by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-,{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ COSY and DEPT experiments.

J. Heterocyclic Chem., 38, 339 (2001).

Introduction.
The pyrido[2,3- d]pyrimidine derivatives present interesting biological properties. Thus, recent works showed that these compounds have been used as dihydrofolate reductase inhibitors as antitumor agents [1-3]; some of them have shown a broad spectrum of antimicrobial activity [4-7], diuretic properties [8] and activity against platelet aggregation [9].
As part of our continuing interest in the reaction of aminopyrimidines with α, β-unsaturated compounds and their precursors [10-16], in this work we studied the cyclocondensation reaction between the 6 -aminopyrimidines $\mathbf{1}$ and the hydrochloride of the Mannich base 2 (2-dimethylaminomethylentetralone hydrochloride).

Results and Discussion.
Thus, the reaction of equimolar amounts of aminopyrimidines 1a-h and 2-dimethylaminomethylentetralone hydrochloride 2 in absolute ethanol at reflux yield the linear dihydrobenzo[h]pyrimido[4,5-b]quinolines 3a-h in good yields ($60-70 \%$) as unique products (Scheme 1).

The Mannich bases (2) are relatively unstable and easily lose the amino group forming vinyl ketones [17-20]. Addition of vinyl ketone, resulting from elimination of dimethylamine hydrochloride from 2 , to the nucleophilic 5 carbon atom of the pyrimidine ring and subsequent cyclization with water elimination gives 3a-h. On the other hand, the addition of the amino group of $\mathbf{1}$ to the β-C atom of vinyl ketone followed by cyclization can afford 4. The cyclocondensation of amines 1a-h with 2 gave regiospecifically the linear isomer, dihydrobenzo[h]-pyrimido[4,5-b]quinolines $\mathbf{3 a} \mathbf{- h}$. In each case, the reaction gave a single product as determined on tlc. The support for the linear structures for $\mathbf{3}$ was provided from ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra in particular with respect to the chemical shift of the $\mathrm{H}-7$ proton.

The formation of $\mathbf{3 a} \mathbf{- h}$ is assumed to proceed by a Michael type addition of the most nucleophilic ring carbon atom in the aminopyrimidine to the activated double bond of vinyl ketone $[11,15,16]$. The intermediate formed Michael adduct, cyclic and by water elimination yield dihydrobenzo[h]pyrimido[4,5-b]quinolines 3a-h (Scheme 1).

The ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra of compounds 3a-h (see Table 1) contain one singlet at $8.18-8.61 \mathrm{ppm}$ for the $\mathrm{H}-7$ proton and signals at 2.94-3.06 ppm for methylene protons of the $\mathrm{C}(5) \mathrm{H}_{2}-\mathrm{C}(6) \mathrm{H}_{2}$ fragment.

Table 1
${ }^{1} \mathrm{H}-\mathrm{NMR}$ Data of 3a-h δ Values, Tetramethylsilane as the Internal Standard, in Dimethyl Sulfoxide-d ${ }_{6}, 300 \mathrm{MHz}$

[a] Trifluor acetic acid and dimethyl sulfoxide- $\mathrm{d}_{6}(50 \%)$ as solvent. [b] Appears together $\mathrm{H}_{3} \mathrm{O}^{+}$signal. [c] 9-H and 11-H at 12,54 and 13,08 ppm respectively. [d] 9CH_{3} and $11-\mathrm{CH}_{3}$ at 3,81 and $3,49 \mathrm{ppm}$ respectively. [e] $8-\mathrm{NH}_{2}$ and $10-\mathrm{NH}_{2}$ at 8,31 and $7,20 \mathrm{ppm}$ respectively.

In the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of compounds $\mathbf{3}$, the number of signals belonging to quaternary, tertiary, secondary and primary carbon atoms were determined (DEPT experiments, Table 2). It is worth mentioning that these compounds 3a-h showed in their ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra the signals for $\mathrm{C}-11 \mathrm{a}$ at higher δ value $156-161 \mathrm{ppm}$ and, in contrast, carbon atoms C-7a appeared at unusually low δ values (103-113 ppm).

Table 2
${ }^{13}$ C-NMR Data of $\mathbf{3 a} \mathbf{- h} \delta$ Values, Tetramethylsilane as the Internal Standard, in Dimethyl Sulfoxide-d ${ }_{6}$, 75 MHz

	3a	3b	3c	3d	3e $[\mathrm{a}]$	3f	3g	3h
C-1	130.4	130.5	130.1	130.7	127,6	130.9	130.9	130.5
$\mathbf{C - 2}$	127.0	127.0	126.5	127.3	129,3	127.0	127.3	127.0
$\mathbf{C - 3}$	125.7	125.8	126.0	127.1	135,3	125.7	126.2	125.4
C-4	128.1	128.1	127.5	127.9	130,4	128.2	128.2	128.1
C-4a	139.4	139.4	139.0	139.5	143,1	139.6	139.5	139.5
C-5	27.2	27.0	27.3	28.0	28,1	26.9	27.9	27.3
C-6	26.7	26.7	26.9	27.9	27,6	26.3	27.0	26.9
C-6a	128.5	129.8	128.5	130.4	132,4	128.7	127.2	126.4
C-7	134.5	134.3	134.7	135.1	141,9	135.1	136.3	132.5
C-7a	112.7	113.7	111.4	112.7	112,2	110.5	108.9	103.7
C-8	162.6	161.1	161.7	161.9	161,3	150.3	149.7	154.5
C-10	156.2	155.3	155.1	161.4	155,0	175.4	151.7	162.9
C-11a	157.6	159.6	157.3	156.0	152,0	159.6	161.5	159.4
C-12a	156.9	156.9	155.5	158.6	156,4	156.3	156.7	156.5
C-12b	133.3	133.1	132.9	133.5	129,2	132.4	133.2	133.0

[a] Trifluor acetic acid and dimethyl sulfoxide- $\mathrm{d}_{6}(50 \%)$ as solvent. $\mathrm{CH}_{3} \mathrm{~S}$ for 3b and 3d 12.9 and 15.3 ppm , respectively; $\mathrm{CH}_{3} \mathrm{O}$ for $\mathbf{3 a}$ and 3c 54.8 and $55.6 \mathrm{ppm}, 9-\mathrm{CH}_{3}$ for $\mathbf{3 c}$ and $\mathbf{3 d} 27.8$ and 30.4 ppm , respectively; $9-\mathrm{CH}_{3}$ and $11-\mathrm{CH}_{3}$ for $\mathbf{3 g} 29.4$ and 28.4 ppm , respectively.

The determination of linear structures was based on the signals assignment in the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of 3a-h, which is supported by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY technique and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ shift correlation, as well as by comparison with ${ }^{1} \mathrm{H}$ nmr and ${ }^{13} \mathrm{C} \mathrm{nmr}$ data which has been previously established by us [14-16] and others [25-28] for similar systems. HMBC experiments indicate a two-bond correlation between $\mathrm{H}-7$ and $\mathrm{C}-7 \mathrm{a}$ and three-bond correlations between the $\mathrm{H}-7$ proton and $\mathrm{C}-8$ and between the $\mathrm{H}-7$ proton and C-6. These experiments rule out the formation of the angular structure 4 (Scheme 1).

EXPERIMENTAL

Melting points were determined on a Buchi Melting Point Apparatus and are uncorrected. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ nmr spectra were recorded on a Bruker DPX 300 spectrometer operating at 300 MHz and 75 MHz respectively, using dimethyl sulfoxide $-\mathrm{d}_{6}$ as solvent and tetramethylsilane as internal standard. The mass spectra were scanned on a Hewlett Packard 5989-B mass spectrometer (EI, 70 eV). Samples were introduced via a DIP. The elemental analysis were obtained using a LECO CHNS-900.

General procedure for the Preparation of the 5,6-Dihydrobenzo[h] pyrimido[4,5- b]quinolines 3.

A solution of 6-aminopyrimidines 1a-h (2.0 mmoles) and an equimolar amount of the 2-dimethylaminomethylentetralone (2-[(dimethylamino)methyl]-3,4-dihydro-1-(2 H$)$-napthalenone) hydrochloride $2(2.0$ mmoles $)$ in ethanol (10 ml) with a catalytic amount of triethylamine (5 drops) was refluxed for 1-12 hours (tlc monitoring), and allowed to cool overnight. The resulting white precipitate was filtered, washed with ethanol and recrystallized from ethanol (the products $\mathbf{3 e}$-h were recrystallized from a mixture water/dimethylformamide) to afford 60-72 \% of the desired products 3a-h.

10-Methoxy-5,6-dihydro-9H-benzo[h]pyrimido[4,5-b]quinolin-8-one (3a).

This compound was obtained according to the general procedure as yellow crystals, $\mathrm{mp} 238{ }^{\circ} \mathrm{C}$, yield 60%. The mass spectrum shows the following peaks: $\mathrm{ms}:(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=280$ (34), 279 ($\mathrm{M}^{+}, 100$), 278 (22), 264 (11), 221 (10), 193 (10).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 68.81; H, 4.69; N, 15.05. Found: C, 68.65; H, 4.83; N, 11.93.

10-Methylthio-5,6-dihydro-9H-benzo[h]pyrimido[4,5- b]quin-olin-8-one (3b).

This compound was obtained according to the general procedure as yellow crystals, $\mathrm{mp} 283{ }^{\circ} \mathrm{C}$, yield 65%. The mass spectrum shows the following peaks: $\mathrm{ms}:(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=296$ (26), 295 ($\mathrm{M}^{+}, 100$), 294 (12), 221 (21), 193 (10).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 65.06 ; \mathrm{H}, 4.44 ; \mathrm{N}, 14.23$. Found: C, 65.15; H, 4.13; N, 14.09.

10-Methoxy-9-methyl-5,6-dihydro-9H-benzo[h]pyrimido-[4,5-b] quinolin-8-one (3c).

This compound was obtained according to general procedure as white crystals, mp $215{ }^{\circ} \mathrm{C}$, yield 70%. The mass spectrum shows the following peaks: $\mathrm{ms}:(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=294(21), 293$
(${ }^{+}$, 100), 292 (10), 279 (23), 278 (22), 264 (22), 193 (11), 44 (56), 43 (33).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $69.61 ; \mathrm{H}, 5.15 ; \mathrm{N}, 14.33$. Found: C, 69.55; H, 5.26; N, 14.48.

10-Methythio-9-methyl-5,6-dihydro-9 H -benzo[h]pyrimido-[4,5-b]quinolin-8-one (3d).

This compound was obtained according to the general procedure as pale yellow crystals, $\mathrm{mp} 233^{\circ} \mathrm{C}$, yield 62%. The mass spectrum shows the following peaks: ms: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=310$ (24), 309 (${ }^{+}$, 100), 308 (10), 295 (14), 265 (17), 264 (71), 263 (28), 235 (14), 234 (11), 222 (21), 193 (13), 192 (11).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 66.00 ; \mathrm{H}, 4.89 ; \mathrm{N}, 13.58$. Found: C, 66.05; H, 4.73; N, 13.40.

10-Amino-5,6-dihydro-9H-benzo[h]pyrimido[4,5-b]quinolin-8one (3e).

This compound was obtained according to the general procedure as pale yellow crystals, $\mathrm{mp}>360^{\circ} \mathrm{C}$, yield 63%. The mass spectrum shows the following peaks: $\mathrm{ms}:(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=265$ (19), $264\left(\mathrm{M}^{+}, 100\right), 263$ (27), 84 (17), 66 (18).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 68.17 ; \mathrm{H}, 4.58 ; \mathrm{N}, 21.20$. Found: C, 68.25; H, 4.63; N, 21.34.

10-Thioxo-5,6,10,11-tetrahydro-9 H -benzo[h]pyrimido-[4,5-b]quinolin-8-one (3f).

This compound was obtained according to the general procedure as pale yellow crystals, mp $349^{\circ} \mathrm{C}$, yield 65%. The mass spectrum shows the following peaks: ms: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=282$ (21), 281 ($\mathrm{M}^{+}, 100$), 280 (10), 223 (10).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 64.04 ; \mathrm{H}, 3.94 ; \mathrm{N}, 14.94$. Found: C, 64.11; H, 3.79; N, 14.80.

9,11-Dimethyl-5,6-dihydro-11 H-benzo[h]pyrimido[4,5-b]quin-olin-8,10-dione ($\mathbf{3 g}$).

This compound was obtained according to general procedure as pale yellow crystals, $\mathrm{mp} 255^{\circ} \mathrm{C}$, yield 72%. The mass spectrum shows the following peaks: ms: $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=294$ (23), 293 ($\mathrm{M}^{+}, 100$), 292 (19), 265 (17), 264 (16), 181 (16).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $69.61 ; \mathrm{H}, 5.15 ; \mathrm{N}, 14.33$. Found: C, 69.71; H, 5.10; N, 14.40.

8,10-Diamino-5,6-dihydrobenzo[h]pyrimido[4,5- b]quinoline (3h).

This compound was obtained according to the general procedure as yellow crystals, $\mathrm{mp}>360{ }^{\circ} \mathrm{C}$, yield 68%. The mass spectrum shows the following peaks: $\mathrm{ms}:(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=264$ (22), $263\left(\mathrm{M}^{+}, 100\right), 262(24), 220(10)$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5}$: C, 68.43; H, 4.98; N, 26.60. Found: C, 68.31; H, 4.83; N, 26.50.

Acknowledgement.
The authors thank The Colombian Institute for Science and Research (COLCIENCIAS) and UNIVERSIDAD DEL VALLE for the financial support of this work.

REFERENCES AND NOTES

[1a] A. Gangjee, A. Vasudevan, F. Queener and R. Kisliuk, J. Med. Chem., 38, 1778 (1995); [b] A. Gangjee, U.S. Patent 5,508,281 (1996); Chem. Abstr., 125, 33667a, (1996); [c] A. Gangjee, A. Vasudevan, F. Queener and R. Kisliuk, J. Med. Chem., 39, 1438 (1996).
[2] A. Rosowsky, in Progress Medical Chemistry, Vol. 26, G. P. Ellis and G. B. West eds, Elsevier Science, New York, 1989, p 1.
[3] P. J. O'Dwyer, D. D. Shoemaker, J. Plowman, J. Cradock, A. Grillo-Lopez and B. Leyland-Jones, Invest. New. Drugs, 3, 71 (1995).
[4] G. H. Hitchings and D. P. Baccanari in Folate Antagonists as Therapeutic Agents, Vol. 1, F. M. Sirotnak, J. J. Burchall, W. B. Ensminger and J. A. Montgomery eds, Academic Press Inc., Orlando, FL, 1984, p 151.
[5] J. Matsumoto and S. Minami, J. Med. Chem., 18, 74 (1975).
[6] N. Suzuki, Chem. Pharm. Bull., 28, 761 (1980).
[7] S. A. K. Sharma and L. Prakash, Heterocyclic Commun., 1, 89 (1994).
[8] A. Monge, V. Martínez, C. San Martín and M. A. Simon, Spanish Patent ES 2,056,742 (1994); Chem. Abstr., 122, 105912q (1995).
[9] G. Hou, D. Gravier, F. Casadebaig, J. Dupin, H. Bernard and M. Boiseau, Pharmazie, 50, 719 (1995).
[10] J. Quiroga, B. Insuasty, A. Sánchez, M. Nogueras and H. Meier, J. Heterocyclic Chem., 29, 1045 (1992).
[11] J. Quiroga, J. García, B. Insuasty, N. L. Mendoza, M. Pungo and H. Meier, An. Quim., 90, 3-4C, 300 (1994).
[12] J. Quiroga, A. Hormaza, B. Insuasty, A. Sánchez, M. Nogueras, N. Hanold and H. Meier, J. Heterocyclic Chem., 34, 521 (1997).
[13] B. Insuasty, J. Quiroga, H. Meier, Trends in Heterocyclic Chem., 5, 83 (1997).
[14] J. Quiroga, A. Hormaza, B. Insuasty, A. J. Ortíz, A. Sánchez and M. Nogueras, J. Heterocyclic Chem., 35, 231 (1998).
[15] J. Quiroga, M. Alvarado, B. Insuasty, A. Sánchez, M. Nogueras and J. Cobo, J. Heterocyclic Chem., 35, 1309 (1998).
[16] J. Quiroga, M. Alvarado, B. Insuasty, A. Sánchez, M. Nogueras and M. D. Lopez, J. Heterocyclic Chem., 36, 113 (1999).
[17] H. Hellmann and G. Opitz, Alpha-aminoalkylurung, Verlag Chemie, Weinheim, 1960, p. 246.S.
[18] Piroelle and P. Rollin, Bull. Soc. Chim. Fr., (7-8), 2543 (1973).
[19] J. Quiroga, B. Insuasty, P. Hernandez, R. Moreno, Regina H. de Almeida and H. Meier, Eur. J. Org. Chem., 6, 1201 (1998).
[20] J. Quiroga, B. Insuasty, S. Cruz, P. Hernández, A. Bolaños, R. Moreno, A. Hormaza and Regina H. de Almeida, J. Heterocyclic Chem., 35, 333 (1998).
[21] R. Troschutz and H. J. Roth, Arch. Pharm. (Weinhein), 311, 406 (1978).
[22] R. Troschutz, T. Dennstedt, Arch. Pharm. (Weinhein), 327, 221 (1994).
[23] R. Rodríguez, M. Suarez, E. Ochoa, A. Morales, L. González, N. Martín, M. Quinteiro, C. Seoane and J. L. Soto, J. Heterocyclic Chem., 33, 45 (1996).
[24] A. Pastor, R. Alajarin, J. J. Vaquero, J. Alvarez-Builla, M. Fau de Casa-Juana, C. Sunkel, J. G. Proego, I. Fonseca and J. SanzAparicio, Tetrahedron, 50, 8085 (1994).
[25] A. Gangjee and I. O. Donkor, J. Heterocyclic Chem., 26, 701 (1989).
[26] I. O. Donkor, A. Gangjee and F. K. Duah, J. Heterocyclic Chem., 27, 765 (1990).
[27] I. O. Donkor, A. Gangjee, R. L. Kisliuk, and Y. Gaumont, J. Heterocyclic Chem., 28, 1651 (1991).
[28] I. O. Donkor, R. Devraj, S. F. Queener, L. R. Barrows and A. Gangjee, J. Heterocyclic Chem., 33, 1653 (1996).

